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Abstract

Influenza viruses are endemic in human and animal populations and have caused numerous pan-
demics. The diversity of the circulating human viruses includes four subtypes (H1N1, H3N2, Yamagata-
lineage, Victoria-lineage). Within the subtypes, there are multiple antigenic clusters. Influenza vaccine ini-
tiatives push for broadly protective vaccine development. However, currently, there is no consensus on the
definition of the breadth of response. Different methods are used, including both qualitative and quantita-
tive methods. Here we introduced influenza distance measures (time-, sequence-, and cartographic-based)
to quantify the change in distance and the change in HAI titer in a cohort of individuals who received the
standard dose influenza vaccine. Further, the area under the curve was quantified to measure breadth. A
proof-of-concept compared standard and high dose vaccination responses in an elderly cohort. Overall, a
consistent breadth measure allows for quantitative antibody, cellular, and antiviral activity descriptions.
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Chapter 1

Introduction

1.1 Background

Influenza viruses have been responsible for seasonal epidemics of influenza and four global pandemics

since 1918. The virus infects nearly 1 billion individuals annually, with 290,000 to 650,000 cases resulting

in death. Endemically, two species of influenza virus seasonally infect humans, Type A and Type B.

Only Type A has proven pandemic potential due to its copious zoonotic reservoirs and all previously

known pandemics being of Type A origin. Most viral neutralizing antibodies target the surface proteins,

hemagglutinin (HA), and neuraminidase (NA).

Over time, the antibodies elicited to one influenza virus strain become inadequate to current circulat-

ing strains due to antigenic drift. Host antibodies bind to antigenic sites located on the surface proteins,

and these antigenic sites mutate through selective pressure from the host and a high viral RNA poly-

merase mutation rate. Hence, antibodies that once bound to and neutralized the influenza virus before

the antigenic drift are no longer highly protective to the newly circulating antigenically drifted strain.

Further, reassortment between two or more Type A influenza viruses results in progeny with distinct

gene constellations due to the eight RNA genome segments. These reassorted viruses may have unique

surface protein combinations. In 1968, the H3N2 pandemic was the result of reassortment of the H2N2

human seasonal virus and an H3NX avian virus (Scholtissek et al., 1978; Valkenburg & Poon, 2022). This
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drastic change in surface protein composition resulted in most antibodies directed to H2 protein being

ineffective. This phenomenon is termed an antigenic shift. Antigenic shifts can also occur within protein

subtypes. For example, the 2009 H1N1 pandemic resulted from an antigenic shift from the human seasonal

lineage H1 HA to a swine lineage H1 HA. Antigenic shift and drift allow evolutionary drifted viruses and

new reassortments to infect hosts even though those hosts had previous influenza virus exposure.

The antibodies that inhibit the HA activity are the primary correlate of protection in humans for

seasonal Type A influenza. Infection elicits these HA-specific antibodies, and fortunately, vaccination

does as well. Vaccination remains the primary preventative method of the disease. Influenza vaccines are

most commonly split-inactivated viruses that contain four components: two Type A strains – one each

of an H1N1 and H3N2 – and two Type B – one each of the Victoria-lineage and the Yamagata-lineage.

The World Health Organization (WHO) and other governmental agencies re-evaluate and update the

vaccine strains annually depending on factors, including surveillance data and antigenic distance between

the vaccine strains and current circulating strains. Antigenic characterization assesses how similar two

viruses are to antibody-mediated inhibition. When the antigenic distances of the viruses are close, two

antigenic distance units (AU) (4-fold hemagglutinin inhibition (HAI) titer difference), the data suggests

no vaccine change. However, three or greater (8-fold HAI titer difference) suggests that antibodies elicited

to the vaccine strain do not adequately inhibit the HA receptor-binding of the circulating strain, and data

support a vaccine strain change.

1.2 Influenza vaccines

The split-inactivated virus vaccines elicit strain-specific neutralizing antibodies to the HA and NA (Dong

et al., 2018). In addition to the time necessary to survey the circulating strains, create anti-sera in ferrets,

calculate antigenic distance, and propose a vaccine strain change for next season, the new vaccine strain

then needs to be optimized for growth for vaccine production. Overall, it takes time and resources to

change a vaccine strain.
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Therefore, influenza vaccine initiatives have focused on developing broadly protective candidates

that elicit protection across subtypes and ideally across all Type A influenza (Wei et al., 2020). Multiple

candidates are in development and evaluation for protective responses (Vogel & Manicassamy, 2020).

Different assays for detecting and quantifying the vaccine response are proposed and utilized based upon

the mechanism of action and the research group’s interest (Krammer et al., 2019). However, HA inhibiting

antibodies (HAI) remain the main biomarker associated with protection. Thus, most commonly, the

magnitude of the vaccine response is measured by the titer increase of the serum HAI antibodies. An HAI

titer of 1:40 correlated with 50% protection from clinical disease for Type A human seasonal influenza

(Hobson et al., 1972). Yet, the HAI results for the recent H3N2 isolates are unreliable due to difficulties

in conducting the HAI assay with these newer strains from a combination of increased NA mediated

agglutination and decreased HA agglutination (Auladell et al., 2022; Mögling et al., 2017).

Scientists assess vaccine candidates for efficacy in pre-clinical animal models and human clinical trials.

From these studies, different assays measure the magnitude and functionality of the antibody response

(Krammer et al., 2019). The viral breadth of these responses is qualitatively analyzed. The broadly reactive

responses are compared to those of a strain-specific vaccine to conclude that the new candidate has a

broader profile to a select panel of viruses.

1.3 Breadth of a vaccine response

The viral breadth panel is commonly quantified by counting the positive responses. If the vaccine can-

didate has inhibited more viruses than the comparator, it is seen as more broadly reactive (Allen & Ross,

2021; Andrews et al., 2022; Dugan et al., 2020; Hinojosa et al., 2020; Jang & Ross, 2021; G.-M. Li et al.,

2012; Z.-N. Li et al., 2021; Nachbagauer et al., 2014). This method remains the easiest to conduct. The

selection of a panel by the researchers opens the door for bias in testing. Virus selection bias includes over-

representation of easily accessible viruses or viruses from the same antigenic group, regional differences in

virus strains, and subconscious or conscious selection for viruses that provide a desired positive response.

Further, when comparing multiple vaccine candidates from different research groups, the breadth pan-
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els may not overlap. Therefore, before determining if a vaccine candidate is more broadly reactive than

another, the method for calculating the breadth of a vaccine response needs to be determined.

The correlate of protection assay used for determining the breadth of an antibody response is most

commonly the hemagglutinin inhibition assay (HAI). The HA protein of influenza agglutinates red

blood cells by binding sialic acid with the HA’s receptor-binding site (RBS). This mechanism quantifies

the amount of anti-RBS HA antibodies in a sample. Blood samples are separated into serum and clotted

red blood cells. The serum contains the individual’s circulating peripheral antibodies. Sera are diluted in a

two-fold dilution starting at 1:10 (1:10, 1:20, 1:40), up to 1:10,240 or 1:20,480. The diluted serum incubates

with virus and red blood cells. After, results are interpreted by eye, and the last dilution that inhibits the

agglutination of the virus and red blood cells is that individual’s HAI titer to the tested virus.

The HAI is difficult to interpret quantitatively. The combination of the subjectivity of interpreting

the results, the measurement of an indirect relationship between the virus and antibody, and the variabil-

ity of the viral binding affinity between viruses and red blood cells (Adabor & Ndifon, 2018; Cai et al.,

2010; Ndifon, 2011). These different variables make the HAI results unreliable when comparing minor

differences in HAI titers with a geometric coefficient of variation ranging between 0-117% for results be-

tween other labs (Waldock et al., 2021; Zacour et al., 2016). Although the same laboratory conducted

all HAIs for this study, the assays were performed over six years with different personnel and different

reagents. Further, due to the assay only quantifying antibodies that bind to the RBS, the assay may not

detect antigenic changes in other locations of the HA protein (Ndifon, 2011).

1.4 Distance measures

Sera breadth measurements mainly entail conducting a correlation of protection assay, such as the HAI

assay, against a panel of viruses. The proportion of strains that had a positive result of different serum

samples are compared together; the one with a greater proportion is classified as having more breadth.

Antibody landscapes have addressed limitations in categorizing viruses. Antibody landscapes assign a

distance between viruses in the panel, thus creating a continuous value for further quantification.
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1.4.1 Time-based

Researchers have incorporated the year it was isolated from the human population (year of isolation) into

antigenic landscapes. The simplest technique places each virus an equal distance from each other and

orders them in chronological order (Figure 1.4.1A) (Boyoglu-Barnum et al., 2021; Hinojosa et al., 2020;

Z.-N. Li et al., 2021). The other assigns the distance based upon year of isolation (Figure 1.4.1) (Auladell

et al., 2022; B. Yang et al., 2020). Depending upon the viruses in the panel, the results of these two

methods can vary greatly. Further, assigning an equal distance between each year increment assumes that

genetic or antigenic evolution occurs at a constant rate over time. However, different antigenic clusters

arise sporadically every 2-5 years for H3N2 and 3-8 years for H1N1 and Type B (Bedford et al., 2015; Castro

et al., 2020; Petrova & Russell, 2017). The analysis is complicated further since multiple antigenic clusters

are isolated within the same year (Castro et al., 2020). But with this method, they would be assigned a

distance of zero.

Figure 1.1: Examples of how antigenic landscapes are created using the year of isolation. A) Representative
antigenic landscape where the influenza viruses are treated as a continuous variable. Each virus is equidis-
tant to the neighboring virus. They are ordered chronologically. B) Representative antigenic landscape
where each distance between the virus is the year it was isolated. Created with Biorender.com

1.4.2 Genetic and amino acid sequence-based

Sequence-based methods for determining distance between viruses have been used consistently in bioinfor-

matics and phylogenetic analyses. The amino acid sequence is usually preferred over nucleic acid sequence

for comparing distances for antibody responses due to multiple codons encoding the same amino acid.
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Thus although a difference may be observed in the nucleic acids, the amino acid sequence remains un-

changed, and there will be no difference in antibody recognition.

The amino acid differences have been determined using the full-length HA protein (Nachbagauer

et al., 2017), the head region (Smith et al., 2004), and specific antigenic sites (Anderson et al., 2018; Gupta

et al., 2006). The portion of the HA used for amino acid distances changes based on where the antibodies

bind. Nachbagauer et al., 2017 was investigating anti-HA antibody titers as measured through an enzyme-

linked immunosorbent assay (ELISA). As such, the research question included stem binding antibodies.

However, other outcomes, such as HAI titers, quantify only antibodies that bind to specific antigenic sites

located on the head of the HA. Therefore, other techniques have removed the highly conserved or internal

amino acid residues from the distance comparison (Anderson et al., 2018; Anderson et al., 2020; Gupta

et al., 2006; Lee & Chen, 2004; Sun et al., 2013). After defining the residues of interest, the Hamming

distance is most commonly used for determining the distance (Anderson et al., 2018; Anderson et al.,

2020; Gupta et al., 2006; Lee & Chen, 2004). Briefly, the Hamming distance is the sum of the number

of differences when comparing two strains. A difference is assigned a value of 1, and a matching residue is

0. This method does not take into account physicochemical similarities between amino acids. Sun et al.,

2013 combined the genetic distance matrix with experimental antigenic distance matrix data to develop

a method that weights each residue depending on its influence on antigenicity, and Neher et al., 2016

combined the two data types to assist with predicting antigenic properties of newly isolated viruses (please

see Y. Wang et al., 2021 for an extensive recent review on antigenic characterization). Models have begun to

include more features of the protein, such as physicochemical properties or glycosylation residues, which,

when present, block antibody binding (Forghani & Khachay, 2020; L. Li et al., 2020).

One of the benefits of sequence-based distances is that they can be determined with relatively little

resources. Surveillance sequences are readily available in influenza databases. However, the genetic cluster

of a virus does not always match its antigenic cluster (Durviaux et al., 2014; Smith et al., 2004). Mutation

of even only one amino acid has been implicated in changing the antigenic profiles between the two very

similar proteins. Sequence-based methods are being used to develop prediction models to determine if a
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new viral strain will be antigenically distinct. However, the most accurate models require HAI antigenic

distance data for training (Forghani & Khachay, 2020; L. Li et al., 2020; Neher et al., 2016; J. Yang et al.,

2014).

1.4.3 Antigenic distance-based

Experimental antigenic distance

HAI results are the gold standard for measuring the antigenic distance between two strains. The experi-

mental pair-wise antigenic distance is determined by creating anti-sera specific to viruses A and B. The HAI

inhibition to each virus with each anti-sera is measured and creates a matrix (Table 1.4.3). The Archetti-

Horsfall measure was introduced in 1950 and requires all four HAI titers HAIAA, HAIBB , HAIAB , and

HAIBA if HAIV irus,Antisera (Equation 1.1). The inclusion of both homologous titers makes the value

less dependent on non-antigenic factors associated with the HAI assay, such as viral avidity for red blood

cells (Archetti & Horsfall, 1950; Lee & Chen, 2004; Ndifon et al., 2009).

distance =

√
HAAHBB

HBAHAB

(1.1)

The Archetti-Horsfall equation requires both homologous and heterologous titers for each virus.

The number of resources needed for anti-sera generation, virus propagation, and HAI conduction is

too significant to justify the creation of a full matrix. Therefore, the one-side antigenic distance is the

most used (Equation 1.2). The one-sided measure allows sera generated to a limited set of viruses to be

tested against a larger HAI panel. The experimental antigenic distance was initially used for vaccine strain

selection to determine if the current circulating viruses had drifted too far from the vaccine strain.

distance =

√
HAA

HBA

(1.2)

In addition to vaccine selection, Hay et al., 2019 used experimental antigenic distances for antigenic

landscapes in ferrets with H3N2 and H1N1 strains. The antigenic distance hypothesis also relies on the
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Table 1.1: Antigenic distance calculation using experimental HAI values and the one-sided equation.
HAI Titer Calculation Antigenic Distance

HAI Virus Serum A Serum B Serum A Serum B Serum A Serum B

Virus A 2560 320 log2(
2560
2560

) log2(
5120
320

) 0 4

Virus B 40 5120 log2(
2560
40

) log2(
5120
5120

) 6 0

empirical measure (Skowronski et al., 2017). Briefly, the antigenic distance hypothesis that if vaccinated

with a strain that is too closely related (≤ 2 antigenic distance units), then there will be negative interference

between the previous vaccine and the new vaccine, and vaccination with this new strain is not suggested

(Belongia et al., 2017).

Antigenic cartography distance

Antigenic cartography utilizes the experimental antigenic distance (Equation 1.2). The seminal study

by Smith et al., 2004 transformed the HAI titer matrix into an antigenic map, which placed the viruses

and anti-sera onto a two-dimensional map (Figure 1.4.3). The dimension reduction used metric mul-

tidimensional scaling (MDS), allowing the experimental antigenic distance information to be retained.

The difference between the cartographic Euclidean distances between viruses and sera and experimental

antigenic distances are minimized during metric MDS.

The original cartographies were created with ferret sera specific to only one virus (Smith et al., 2004).

Fonville et al., 2015 then compared the Smith et al., 2004 to cartographies created with human sera col-

lected from children before multiple exposures to influenza had occurred. The positioning of the viruses

correlated between the different serum origins. In addition, antigenic cartography has been used for H3N2,

swine H1, and neuraminidase of influenza (Fonville et al., 2014; Hinojosa et al., 2020; Kucharski et al.,

2018; J. Wang et al., 2021). Antigenic cartography has been applied to influenza, norovirus (Kendra et al.,

2021), dengue virus (Katzelnick et al., 2021), and Plasmodium falciparum membrane protein (Tuju et al.,

2019).
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Figure 1.2: Schematic of antigenic cartography from HAI results. An HAI matrix is created using anti-
sera (rows) and viruses (columns). The matching sera and virus are underlined and color-matched. After
creating the HAI matrix, multidimensional scaling reduces the data to two dimensions. The HAI fold
change and the units of the antigenic cartography grid are linearly related so that one antigenic unit is one
2-fold change in HAI titer. Created with Biorender.com

1.5 Weighting

Weighting of the overall antibody response can be applied for specific research questions. For instance,

multiple H2N2 HA vaccine candidates developed in Reneer et al., 2020; Reneer et al., 2021, produced a

broad response against the panel of viruses. However, by introducing a weighting scheme to the results,

no longer circulating viruses can be weighted lower than the current circulating viruses that individuals

are more at danger of being infected with. This provides an opportunity for fine-tuning the selection

based upon the outcome goal of the vaccine. It has also been noted that if the vaccine strain is too close

to the previous vaccine strain, then there is negative interference. Therefore, the application of negatively

weighting vaccines that too similar is applicable (Skowronski et al., 2017).

1.6 Purpose of this study

Although the goal remains to be developing a broadly reactive influenza vaccine, there is no consensus on

the definition of breadth. With an objective, reproducible method for quantifying breadth, researchers
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and officials will be able to select an appropriate candidate for future use. Further, the breadth measure

allows for more quantitative descriptions of the breadth of antibody, cellular, and antiviral activity.

Therefore, this study determined which distance measures between viruses were appropriate, looking

at H1N1 and H3N2 subtypes. A human cohort’s antibody responses to the influenza Fluzone vaccine were

analyzed to determine the proper virus distance measure. Antigenic landscapes were created using time-,

sequence-, and cartographic-based distance measures and change in HAI titer. The breadth response of

the vaccine was quantified. After which, we propose different weighting schemes that could be applied

to focus on the desired breadth outcome.
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Chapter 2

Data description and viral

pair-wise distance calculations

2.1 Analysis tools and cleaning

Data cleaning and analysis were conducted with R version 4.1.2 (2021-11-01) and Rstudio version Prairie

Trillium 2022.2.0.443 (R Core Team, 2021; RStudio Team, 2022). Individuals who did not have both

pre- and post-vaccination titers were removed during cleaning. Further, one individual from the 2014

season was removed from the SD/HD comparisons because they received the HD vaccine with an age

of 61 (participant id: pa2014_id_1218). This was due to the analysis cutoff being individuals of age 65

years or greater. Each individual’s sera were tested in an HAI panel of H1N1 and H3N2 viruses pre- and

post-vaccination (D0 and D21-D28) (Figure 2.1). The reciprocal HAI titers were transformed before

analysis (Equation 2.1).

Transformed Titer = log2(
titer

5
) (2.1)

After transformation, the titer increase was determined by subtracting the pre-vaccination titer from

the post-vaccination titer for each strain in the virus panel (Equation 2.2).
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Titer Increase = Transformed Titerpost − Transformed Titerpre (2.2)

figures/methods/Fluzone Cohort.png

Figure 2.1: Individuals were enrolled starting in September at the start of the Northern Hemispheres
influenza season. Individuals greater than or equal to 65 years of age were given the option of either the
standard dose (SD) or high dose (HD) Fluzone inactivated influenza vaccine. All individuals less than 65
years received the SD formulation. Sera was collected on the day of vaccination and then between 21 and
28 days after vaccination. Pre- and post-vaccination sera was then tested in H1N1 and H3N2 influenza
virus HAI panels.
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2.2 Cohort information

The CIVIC cohort data comprised volunteers enrolled from September 2014 to 2019 for the Northern

Hemisphere influenza season. From 2014 to 2016, the individuals were enrolled from Pittsburgh, PA, and

Stuart, FL. Individuals between the ages of 18 and 85 years of age. From 2017 to 2019, the study site was

moved to Athens, GA, and individuals between the ages of 11 and 85 were enrolled. If possible, individuals

were given the ability to re-enroll for the following season leading to involvement in multiple seasons

(‘number of year enrolled‘ in Tables 2.1 and 2.2).

All individuals less than 65 years of age received the recommended influenza vaccine composition in

the standard dose (SD; 15µg of each viral HA protein) formulation. Individuals greater than or equal

to 65 years of age were given a choice between SD and high dose (HD; 60µg of each viral HA protein)

formulations. The intramuscular vaccines administered were FluzoneTM (Sanofi Pasteur, Swiftwater, PA,

USA) inactivated influenza trivalent (2014 SD and HD; 2015-2019 HD) or quadrivalent (2015-2019 SD)

formulations. Exclusion criteria for individuals included: receipt of influenza vaccine for the specific

season, previous history of Guillain-Barré, dementia, Alzheimer’s disease, immunocompromised status,

allergies to egg or egg products, concurrent enrollment in another influenza vaccine study, or less than two

years of life expectancy. Blood was collected from individuals at day 0 pre-vaccination and 21-28 days post-

vaccination. Sera was extracted from blood samples and stored at -150°C until use in the hemagglutinin

inhibition (HAI) assay.

The data was divided into two datasets. The individuals who received only the standard dose vacci-

nation (Table 2.1) and the individuals who are equal to or greater than 65 years of age separated by the

dose received (Table 2.2). The recommended influenza vaccine compositions changed over the seasons

dependent on the circulating strains at the time and the dose (Table 2.3). In 2014, both doses were trivalent

formulations.
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Table 2.1: Cohort demographics for individuals who received the SD dose by season.
Category Season 2014 2015 2016 2017 2018 2019

Total Individuals 238 209 328 255 242 392
Median Age (Years) 57 56 44 25 16 36.5
Age Range 20-83 21-84 18-82 12-83 12-75 11-85

Sex Female 172
(72.3%)

156
(74.6%)

221
(67.4%)

142
(55.7%)

137
(56.6%)

232
(59.2%)

Male 66
(27.7%)

53
(25.4%)

107
(32.6%)

113
(44.3%)

105
(43.4%)

160
(40.8%)

Race Black 44
(18.5%)

38
(18.2%)

46
(13.7%)

19
(7.5%)

11
(4.5%)

33
(8.4%)

Hispanic 27
(11.3%)

17
(8.1%)

24
(7.3%)

16
(6.3%)

11
(4.5%)

13
(3.3%)

White 158
(66.4%)

147
(70.3%)

235
(71.6%)

205
(80.4%)

203
(83.9%)

324
(82.7%)

Not Available 9
(3.8%)

7
(3.3%)

10
(3%)

Other 14
(4.3%)

15
(5.9%)

17
(7%)

22
(5.6%)

# Years Enrolled 1 238
(100%)

42
(19.8%)

194
(57.9%)

157
(61.6%)

100
(41.3%)

245
(62.5%)

2 170
(80.2%)

21
(6.3%)

98
(38.4%)

73
(30.2%)

56
(14.3%)

3 120
(35.8%)

69
(28.5%)

52
(13.3%)

4 39
(9.9%)

Percentages are by column

14



Table 2.2: Cohort demographics for individuals of equal to or greater than 65 years of age, stratified by
dose and season.

Season 2014 2015 2016 2017 2018 2019
Category Dose SD HD SD HD SD HD SD HD SD HD SD HD

Total Individuals 54 39 40 58 34 77 22 16 11 8 21 69
Median Age (Years) 69 71 67 70 68 70 67 69 68 70 69 70
Age Range 65-83 65-80 65-84 66-81 65-82 65-85 65-83 66-83 65-75 68-80 65-85 65-81

Sex Female 37
(68.5%)

30
(76.9%)

26
(65%)

44
(75.9%)

22
(64.7%)

54
(70.1%)

10
(45.5%)

6
(37.5%)

4
(36.4%)

4
(50%)

10
(47.6%)

42
(60.9%)

Male 17
(31.5%)

9
(23.1%)

14
(35%)

14
(24.1%)

12
(35.3%)

23
(29.9%)

12
(54.5%)

10
(62.5%)

7
(63.6%)

4
(50%)

11
(52.4%)

27
(39.1%)

Race Black 10
(18.5%)

18
(46.2%)

11
(27.5%)

16
(27.6%)

5
(14.7%)

20
(26%)

3
(13.6%)

1
(9.1%)

1
(4.8%)

1
(1.4%)

Hispanic 1
(1.9%)

1
(2.6%)

1
(2.5%)

1
(1.7%)

1
(1.3%)

1
(4.5%)

1
(4.8%)

2
(2.9%)

White 42
(77.8%)

20
(51.3%)

26
(65%)

41
(70.7%)

28
(82.4%)

55
(71.4%)

18
(81.8%)

16
(100%)

9
(81.8%)

8
(100%)

18
(85.7%)

65
(94.2%)

Not Available 1
(1.9%)

2
(5%)

1
(2.9%)

1
(1.3%)

Other 1
(9.1%)

1
(4.8%)

1
(1.4%)

# Years Enrolled 1 54
(100%)

39
(100%)

2
(5%)

3
(5.2%)

17
(50%)

9
(11.7%)

10
(45.5%)

12
(75%)

1
(12.5%)

15
(71.4%)

55
(79.7%)

2 38
(95%)

55
(94.8%)

1
(2.9%)

5
(6.5%)

12
(54.5%)

4
(25%)

3
(37.5%)

1
(1.4%)

3 18
(50%)

64
(78%)

11
(100%)

4
(50%)

1
(4.8%)

3
(4.3%)

4 5
(23.8%)

10
(14.5%)

Percentages are by column

Table 2.3: Influenza virus strain components within the Fluzone inactivated virus vaccines.

Season H1N1 H3N2 B-Victoria B-Yamagata
2014 California-2009 Texas-2012 Massachusetts-2012*
2015 California-2009 Switzerland-2013 Brisbane-2008 Phuket-2013*
2016 California-2009 Hong Kong-2014 Brisbane-2008* Phuket-2013
2017 Michigan-2015 Hong Kong-2014 Brisbane-2008* Phuket-2013
2018 Michigan-2015 Singapore-2016 Colorado-2017* Phuket-2013
2019 Brisbane-2018 Kansas-2017 Colorado-2017* Phuket-2013
*Virus strains included in the high dose vaccine formulations
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2.3 Influenza viruses

The D0 and D21-D28 sera from each individual were tested against a virus panel to determine pre- and

post-vaccination titers. HAI titers were measured against the vaccine strain for a subtype as well as against

heterologous strains. A broad selection of H1N1, H3N2, and Type B influenza viruses were included in the

HAI panel over the different seasons (Table 2.4). Due to the cross-reactivity of the HAI titers of the Type

B lineages, i.e., vaccination with one lineage elicits an antibody response to the vaccination lineage and the

heterologous lineage, only the Type A influenza strains were analyzed thoroughly. The cross-reactivity

of the Type B viruses and the preliminary investigation into breadth quantification are included in the

Appendix A.

2.4 Pair-wise distance measures

The differences between the vaccine and heterologous strains were determined within subtypes. Thus the

distances of an H1N1 strain to an H3N2 strain were not calculated. Each distance is a pair-wise distance

from a specified vaccine strain to another strain in the HAI virus panel. The vaccine strains used for the

relative distance measures were listed in Table 2.3. The HAI panel strains were all of the strains in Table

2.4. Three different measures were compared, time-, genetic sequence-, and cartographic-based distances.

With relative distances, the distance of the vaccine strain to itself has a distance of 0, regardless of measure

used, and serves as the reference point.

2.4.1 Time-based measures

The time-based measure required the years of isolation of a select vaccine strain and a virus from the HAI

panel strain of the shared subtype. The pair-wise distance was determined by taking the absolute value of

the difference between the two strains’ years of isolation (Equation 2.3).
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Table 2.4: Strain names and source of HA amino acid sequence used for analysis
Strain Name Short Name Abbreviation Full Length? HA Sequence Source
A/H1N1/South Carolina/1/1918 H1N1-South Carolina-1918 SC/18 Yes UniProt: Q9WFX3
A/H1N1/Weiss/43 H1N1-Weiss-1943 Wei/43 Yes UniProt: Q20N27
A/H1N1/Fort Monmouth/1/1947 H1N1-Fort Monmouth-1947 FM/47 Yes UniProt: Q84110
A/H1N1/Denver/1957 H1N1-Denver-1957 Den/57 Yes UniProt: Q2IBI1
A/H1N1/New Jersey/8/1976 H1N1-New Jersey-1976 NJ/76 Yes UniProt: L0L141
A/H1N1/Ussr/90/1977 H1N1-Ussr-1977 USSR/77 Yes UniProt: P03453
A/H1N1/Brazil/11/1978 H1N1-Brazil-1978 Bra/78 Yes UniProt: A4GBX7
A/H1N1/California/10/1978 H1N1-California-1978 CA/78 Yes UniProt: A4U6W3
A/H1N1/Chile/1/1983 H1N1-Chile-1983 Chi/83 Yes UniProt: A4GCH5
A/H1N1/Singapore/6/1986 H1N1-Singapore-1986 Sing/86 Yes UniProt: A4GCN0
A/H1N1/Texas/36/1991 H1N1-Texas-1991 TX/91 Yes UniProt: B4UPL3
A/H1N1/Beijing/262/1995 H1N1-Beijing-1995 Bei/95 Yes UniProt: B4UPF7
A/H1N1/New Caledonia/20/1999 H1N1-New Caledonia-1999 NC/99 Yes UniProt: Q6WG00
A/H1N1/Solomon Islands/3/2006 H1N1-Solomon Islands-2006 SI/06 Yes UniProt: A7Y8I1
A/H1N1/Brisbane/59/2007 H1N1-Brisbane-2007 Bris/07 Yes UniProt: D5F1Q8
A/H1N1/California/07/2009 H1N1-California-2009 CA/09 Yes UniProt: C3W5X2
A/H1N1/Michigan 45/2015 H1N1-Michigan-2015 MI/15 Yes UniProt: A0A144YDV8
A/H1N1/Brisbane/02/2018 H1N1-Brisbane-2018 Bris/18 Yes Gisaid: EPI1415369
A/H3N2/Hong Kong/8/1968 H3N2-Hong Kong-1968 HK/68 Yes UniProt: A6YBG1
A/H3N2/Port Chalmers/1/1973 H3N2-Port Chalmers-1973 PC/73 Yes UniProt: Q1PUD9
A/H3N2/Texas/1/1977 H3N2-Texas-1977 TX/77 Yes UniProt: I6RX51
A/H3N2/Mississippi/1/1985 H3N2-Mississippi-1985 MI/85 No (17-345AA) Gisaid: EPI129066; Uniprot: Q67178
A/H3N2/Sichuan/2/1987 H3N2-Sichuan-1987 Sich/87 Yes UniProt: H9XCU1
A/H3N2/Shangdong/9/1993 H3N2-Shangdong-1993 Shan/93 Yes UniProt: H9XM74
A/H3N2/Nanchang/933/1995 H3N2-Nanchang-1995 Nan/95 Yes UniProt: H9XED1
A/H3N2/Sydney/5/1997 H3N2-Sydney-1997 Syd/97 Yes UniProt: C3PR59
A/H3N2/Panama/2007/1999 H3N2-Panama-1999 Pan/99 Yes UniProt: Q1K9M3
A/H3N2/Fujian/411/2002 H3N2-Fujian-2002 Fuj/02 Yes UniProt: H9XEX9
A/H3N2/New York/55/2004 H3N2-New York-2004 NY/04 Yes UniProt: B4UPJ0
A/H3N2/Wisconsin/67/2005 H3N2-Wisconsin-2005 WI/05 Yes UniProt: W0RXT2
A/H3N2/Uruguay/716/2007 H3N2-Uruguay-2007 Uru/07 Yes UniProt: B2ZV32
A/H3N2/Perth/16/2009 H3N2-Perth-2009 Per/09 Yes UniProt: C6KNH7
A/H3N2/Victoria/361/2011 H3N2-Victoria-2011 Vic/11 Yes UniProt: A0A097PF39
A/H3N2/Texas/50/2012 H3N2-Texas-2012 TX/12 Yes UniProt: R4L4F3
A/H3N2/Switzerland/9715293/2013 H3N2-Switzerland-2013 Switz/13 Yes Gisaid: EPI530687
A/H3N2/Hong Kong/4801/2014 H3N2-Hong Kong-2014 HK/14 Yes Gisaid: EPI834581
A/H3N2/Alaska/232/2015 H3N2-Alaska-2015 AK/15 Yes UniProt: A0A120I466
A/H3N2/Singapore/infimh-16-0019/2016 H3N2-Singapore-2016 Sing/16 Yes Gisaid: EPI780183
A/H3N2/Stockholm/28/2016 H3N2-Stockholm-2016 Stock/16 Yes Gisaid: EPI781636
A/H3N2/Kansas/14/2017 H3N2-Kansas-2017 KS/17 Yes UniProt: A0A2L2FM43
A/H3N2/Switzerland/8060/2017 H3N2-Switzerland-2017 Switz/17 Yes Gisaid: EPI1266285
A/H3N2/South Australia/34/2019 H3N2-South Australia-2019 SA/19 Yes Gisaid: EPI1387331
B/Presplit-Lineage/Lee/1940 B-Lee-1940 P/Lee/40 Yes UniProt: P03460
B/Presplit-Lineage/Maryland/59 B-Maryland-1959 P/MD/59 No (11-584AA) UniProt: P03461
B/Presplit-Lineage/Singapore/1964 B-Singapore-1964 P/Sing/64 No (5-379AA) UniProt: P12443
B/Victoria-Lineage/Victoria/02/1987 B-Victoria-1987 V/Vic/87 Yes UniProt: A4D5N9
B/Victoria-Lineage/Hong Kong/330/2001 B-Hong-Kong-2001 V/HK/01 Yes UniProt: Q596G1
B/Victoria-Lineage/Malaysia/27127/2004 B-Malaysia-2004 V/Mal/04 Yes UniProt: I2DDB7
B/Victoria-Lineage/Victoria/326/2006 B-Victoria-2006 V/Vic/06 Yes UniProt: U3RTN3
B/Victoria-Lineage/Brisbane/60/2008 B-Brisbane-2008 V/Bris/08 Yes UniProt: I0B7A3
B/Victoria-Lineage/Colorado/06/2017 B-Colorado-2017 V/CO/17 Yes UniProt: A0A1X9RX59
B/Victoria-Lineage/Washington/02/2019 B-Washington-2019 V/WA/19 Yes UniProt: A0A4Y5N4V8
B/Yamagata-Lineage/Yamagata/16/88 B-Yamagata-1988 Y/Yam/88 No (16-360AA) UniProt: P18880
B/Yamagata-Lineage/Harbin/7/1994 B-Harbin-1994 Y/Har/94 Yes UniProt: C4LQ32
B/Yamagata-Lineage/Sichuan/379/1999 B-Sichuan-1999 Y/Sich/99 No (16-361AA) UniProt: A5A5P7
B/Yamagata-Lineage/Florida/4/2006 B-Florida-2006 Y/FL/06 Yes UniProt: R9RV94
B/Yamagata-Lineage/Wisconsin/01/2010 B-Wisconsin-2010 Y/WI/10 Yes UniProt: G8JJL9
B/Yamagata-Lineage/Texas/06/2011 B-Texas-2011 Y/TX/11 Yes UniProt: M9QX33
B/Yamagata-Lineage/Massachusetts/02/2012 B-Massachusetts-2012 Y/MA/12 Yes UniProt: R4KWJ1
B/Yamagata-Lineage/Phuket/3073/2013 B-Phuket-2013 Y/Phu/13 Yes Gisaid: EPI1649072
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Timeab =| Yeara − Yearb | (2.3)

where:

Year = Year of isolation as classified in the strain name

a = Vaccine Strain

b = HAI panel strain

2.4.2 Sequence-based measures

The hemagglutinin amino acid sequence for each vaccine strain and HAI virus were retrieved from ei-

ther GISAID or UniProtKB databases. The HA amino acid sequences were either extracted from the

UniProt protein database using the Rcpi package getSeqFromUniProt() function and the UniProt acces-

sion numbers or from manually downloading the sequence from the Gisaid database if the sequence was

not available on UniProt (Cao et al., 2015; Elbe & Buckland-Merrett, 2017; UniProt Consortium et al.,

2020). The previously described dominant p-epitope was used as the sequence-based distance measure

(Gupta et al., 2006). Antigenic site-specific p-epitopes are selected by calculating the pair-wise hamming

distance of an antigenic site and dividing by the total amino acid residues that comprise that site (Equa-

tion 2.4). After calculating the site-specific p-epitopes for all antigenic sites, the dominant p-epitope

measure was defined as the maximum of those (Equation 2.5. The antigenic sites used for calculating

the sequence-based P-epitope were previously defined (Deem & Pan, 2009; Munoz & Deem, 2005). The

specific residues used are included in Table 2.5. The numbering begins at the beginning of the N-terminal

sequence of the mature protein after the signal peptide had been removed (Burke & Smith, 2014). The

extraction of the defined antigenic sites was done in R using the ’seqinr’ and ’Biostrings’ packages (Charif

& Lobry, 2007; Pagès et al., 2021).
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pepitopeX =
Hamming distance between vaccine strain and HAI panel virus in epitope X

total number of amino acids in epitope X
(2.4)

where: X = Antigenic sites A, B, C, D or E

Pepitope = max(pepitopeA, pepitopeB, pepitopeC , pepitopeD, pepitopeE) (2.5)

Table 2.5: Amino acid residues used for the sequence-based distance measure, p-epitope.
Subtype Antigenic Site Epitope Residues

H1N1

A 118, 120, 121, 122, 126, 127, 128, 129, 132, 133, 134, 135, 137, 139,
140, 141, 142, 143, 146, 147, 149, 165, 252, 253

B 124, 125, 152, 153, 154, 155, 156, 157, 160, 162, 183, 184, 185, 186,
187, 189, 190, 191, 193, 194, 195, 196

C
34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 269, 270, 271, 272, 273, 274,

276, 277, 278, 283, 288, 292, 295, 297, 298, 302, 303, 305, 306, 307,
308, 309, 310

D

89, 94, 95, 96, 113, 117, 163, 164, 166, 167, 168, 169, 170, 171, 172,
173, 174, 176, 179, 198, 200, 202, 204, 205, 206, 207, 208, 209, 210,

211, 212, 213, 214, 215, 216, 222, 223, 224, 225, 226, 227, 235, 237,
241, 243, 244, 245

E 47, 48, 50, 51, 53, 54, 56, 57, 58, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78,
79, 80, 82, 83, 84, 85, 86, 102, 257, 258, 259, 260, 261, 263, 267

H3N2

A 122, 124, 126, 130, 131, 132, 133, 135, 137, 138, 140, 142, 143, 144,
145, 146, 150, 152, 168

B 128, 129, 155, 156, 157, 158, 159, 160, 163, 165, 186, 187, 188, 189,
190, 192, 193, 194, 196, 197, 198

C 44, 45, 46, 47, 48, 50, 51, 53, 54, 273, 275, 276, 278, 279, 280, 294,
297, 299, 300, 304, 305, 307, 308, 309, 310, 311, 312

D
96, 102, 103, 117, 121, 167, 170, 171, 172, 173, 174, 175, 176, 177,

179, 182, 201, 203, 207, 208, 209, 212, 213, 214, 215, 216, 217, 218,
219, 226, 227, 228, 229, 230, 238, 240, 242, 244, 246, 247, 248

E 57, 59, 62, 63, 67, 75, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, 94, 109,
260, 261, 262, 265

H1N1 numbering follows A/California/04/2009 numbering scheme.
All numbering starts at the beginning of the N-terminal sequence of the mature protein

after removal of the signal peptide.
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2.4.3 Antigenic cartography-based measures

Each of the Type A influenza subtypes (H1N1, H3N2) were analyzed individually. Antigenic cartographies

were created with the human HAI datasets using the post-vaccinated HAI titers of all standard dose

recipients. The R package Racmacs was used to create the HAI-based antigenic cartographies (Wilks, 2021).

Sera samples and HAI viruses with less than n + 1 titers for the dimension (n) tested were underconstrained

for mapping and removed before cartography creation. Two-dimensional cartography was found to be

appropriate for use with both subtypes. The HAI titers from standard dose vaccination were used to

limit the number of variables that could affect antigen positioning. Mapping with the resulting data set

was done with 100 optimizations. The map with the lowest resulting stress was used for calculating the

pair-wise distance between vaccine virus and HAI panel viruses. More details regarding the antigenic

cartography with human sera are available in Chapter 3.

Antigenic cartography was utilized to provide antigenic distances between different viruses. Distances

relative to the different vaccine strains were determined by calculating the Euclidean distances using the

map coordinates of the vaccine strain and the other strains within the HAI panel (Equation 2.6) (Cai

et al., 2012).

Cartography Distanceab =
√

(xb − xa)2 + (yb − ya)2 (2.6)

where:

(xa, ya) = Vaccine strain coordinates

(xb, yb) = HAI panel strain coordinates
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2.5 Normalization of measures

The pair-wise distances had different ranges depending on the measure used (Table 2.5). Therefore, to

allow for comparison between them, they were normalized by the maximum value to rescale the values

from 0 to 1. Two different normalization schemes were presented due to the variation in the HAI panel

used over the different seasons.

Season-based normalization used when comparing season-level associations

Normalized Distanceijklm =
dijklm

max(Dijkl)
(2.7)

Strain-based normalization used when comparing strain-level associations

Normalized Distanceijklm =
dijklm

max(Dijk)
(2.8)

where:

d = Untransformed Pair-wise Distance

i = Distance Method (Year, P-epitope, Cartography)

j = Vaccine Subtype (H1N1, H3N2)

k = Vaccine Strain

l = Influenza Season (2014-2019)

m = HAI Panel Virus

The maximum distances used to normalize change depend upon the grouping and comparisons used

(Table 2.5). For the H1N1 viruses, the HAI panel did not vary much for the CA/09 and MI/15 vaccine

viruses since the panel did not change significantly over those seasons (Figure 2.6). For the H3N2 viruses,
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the normalization denominator was similar up until 2018 and 2019, when the HAI panel was truncated.

The difference in virus panels over time are more clearly depicted in Figures 2.6 and 2.7.

2.6 Comparison of measures

One of the key features of using different distance measures to quantify pair-wise virus distances is that the

relative ordering of the virus panel is adjusted depending on which measure is used. For example, Bris/07

has a very short year distance from CA/09 (2 years) but a larger sequence- and cartographic-based distance

(Figure 2.6). Whereas for the H3N2, rankings between viruses do not change as often as the H1N1 strains

due to the relationship between the year, sequence, and cartography measures (Figure 2.7).

2.7 Linear regression, area calculations, and weighting

Simple linear regression used the distance measure as the independent variable and the outcome as the

dependent variable. The outcomes for linear regression included: pre- and post-vaccination titer and titer

increase. The linear regression equations were provided with the 95% confidence interval bands. The area

under the linear regression was quantified between the minimum and maximum distance values. Area

below y = 0 was considered negative area in the summation.

Three weighting schemes included unweighted, linear decrease, and antigenic unit cutoff. The un-

weighted scheme was the area under the regression with no transformation. This weighting scheme applies

to situations where antibody responses to all viruses in the panel are equally important. The linear de-

crease weighting applied a greater weight to the closely related strains and linearly decreased that weight

to 0 for the furthest strains. This scheme applies to situations where an antibody response to the vaccine

virus and closely related ones is more important than the furthest strain in the panel. The last weighting

incorporates the antigenic unit threshold used for vaccine selection. An antigenic unit of 2 was used as the

cutoff to represent a 4-fold HAI titer difference. All antibody responses within this measure were equally

22



Table 2.6: Maximum normalized distances when grouping by season or strain
Season Strain

Method Subtype Vaccine Season max(Dijkl) max(Dijk)

Year

H1N1

CA/09
2014

91.00 91.002015
2016

MI/15 2017 97.00 97.002018 32.00
Bris/18 2019 35.00 35.00

H3N2

TX/12 2014 44.00 44.00
Switz/13 2015 45.00 45.00

HK/14 2016 46.00 46.002017
Sing/16 2018 17.00 17.00
KS/17 2019 18.00 18.00

P-epitope

H1N1

CA/09
2014

0.77 0.772015
2016

MI/15 2017
0.82 0.822018

Bris/18 2019

H3N2

TX/12 2014 0.71 0.71
Switz/13 2015 0.67 0.67

HK/14 2016 0.71 0.712017
Sing/16 2018 0.43 0.43KS/17 2019

Cartography

H1N1

CA/09
2014 4.20 4.242015
2016 4.24

MI/15 2017 4.73 4.732018 4.51
Bris/18 2019 4.15 4.15

H3N2

TX/12 2014 5.46 5.46
Switz/13 2015 5.43 5.43

HK/14 2016 6.24 6.242017
Sing/16 2018 3.45 3.45
KS/17 2019 3.57 3.57
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Figure 2.2: Comparison of the reordering of influenza H1N1 strains by the normalized distances. De-
pending upon the measure, the position on the x-axis varies by season, method, and subtype. The virus
panel for each season had minor variations leading to different normalized values per season. These x-axis
positions correspond to the axis positions for the figures investigating the by season analysis. The vaccine
strain and season are listed for each plot.
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weighted, and all responses greater than it were weighted at 0. The cutoff value can be adjusted based on

the research question.

Figure 2.3: Comparison of the reordering of influenza H3N2 strains by the normalized distances. De-
pending upon the measure, the position on the x-axis varies by season, method, and subtype. The virus
panel for each season had minor variations leading to different normalized values per season. These x-axis
positions correspond to the axis positions for the figures investigating the by season analysis. The vaccine
strain and season are listed for each plot.
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Chapter 3

Antigenic cartography using

pre-immune human sera

Vaccine strain selection utilizes influenza-naive ferrets for anti-sera generation. These animals have no pre-

existing immunity to influenza. This model provides a platform free of the imprinting bias imparted from

initial and multiple exposures to influenza. Humans, however, have been imprinted during childhood

with the first strain that infected them. Imprinting bias has been observed between subtypes; H1N1

imprinted individuals do not have the same immune response to an H3N2 of H7NX infection as an

H3N2 imprinted individual would (Gostic et al., 2016). Therefore, using an influenza-naive ferret model

for immunological responses may not be appropriate to model an influenza pre-immune background

which is most commonly seen in adolescents and adults (For a review of pre-immune ferret models, please

refer to Skarlupka and Ross, 2020).

Most humans older than four years have been immunologically exposed to influenza virus either

through an initial vaccination or an infection. Individuals born before 1956 were imprinted with H1N1,

individuals from 1956 to 1968 with H2N2, and individuals from 1968 to 1977 with H3N2. After 1977, H1N1

re-emerged in the human population. Due to the co-circulation of the Type A subtypes, the imprinting

history of individuals after 1977 is difficult to discern. The H1N1 pandemic of 2009 further complicates

the imprinting histories. Individuals imprinted with H1N1 after 1977 have been imprinted with either
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human-seasonal or pandemic H1N1 strain. Birth year and the surveillance levels of circulating subtypes are

used to determine the probability of one’s imprinting status (Gostic et al., 2019). Other methods include

analyzing an individual’s present-day influenza antibody profile and using that information to infer the

previous exposure history (Hay et al., 2020).

3.1 Dataset and number of dimensions selection

Due to the lack of preliminary data on the reliability of antigenic cartography from pre-immune human

sera, antigenic cartographies were created using different subsets of the cohort sera and comparing the

results to determine if there were viable differences between the maps. The other comparisons included

maps created with pre-vaccination HAI titers and post-vaccination HAI titers, maps created with sera

from only SD vs. all influenza vaccine recipients, and season-based maps produced with only sera from

a specific season compared to all seasons from 2014-2019. The following section outlines the selection

process of the dataset used for pair-wise cartography distances between viruses. Further, the resulting

antigenic cartographies were validated with published data.

First, the appropriate number of dimensions for analysis was determined through a dimension test

(using the Racmacs package and dimensionTestMap() function). Each map was cross-validated to deter-

mine how well the predicted titers matched the observed titers. When comparing maps created with all

and only SD sera-virus pairs, there was minimal difference between the root mean square error (RMSE) of

the maps (Table 3.1). The RMSE was calculated separately for detectable and nondetectable titers (titers

below the limit of detection <1:10). When comparing the different dimensions, the detectable RMSE of

the H1N1 viruses plateaued at two dimensions (Figure 3.1). For the H3N2 viruses the RMSE plateaued at

three dimensions, with the decrease from two to three dimensions being minimal compared to the decline

from one to two dimensions (Table 3.1).
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Table 3.1: Dimensional analysis of H1N1 and H3N2 human cartography maps pre- and post-vaccination
using all sera available (all) or only sera from SD individuals (SD) and comparison of the mean root mean
square error (RMSE) and variance (Var).

Detectable Nondetectable
Subtype Timing Dimensions Vaccine Mean RMSE Var RMSE Mean RMSE Var RMSE

H1N1

Pre

1 All 1.634 0.002 1.582 0.001
SD 1.689 0.002 1.620 0.001

2 All 1.501 0.002 1.372 0.002
SD 1.524 0.002 1.365 0.003

3 All 1.502 0.002 1.245 0.003
SD 1.524 0.002 1.240 0.002

4 All 1.501 0.002 1.142 0.002
SD 1.520 0.003 1.138 0.002

5 All 1.509 0.002 1.110 0.002
SD 1.531 0.003 1.113 0.002

Post

1 All 1.675 0.002 1.846 0.001
SD 1.726 0.002 1.833 0.002

2 All 1.552 0.002 1.427 0.003
SD 1.554 0.002 1.405 0.004

3 All 1.543 0.002 1.314 0.002
SD 1.562 0.002 1.277 0.003

4 All 1.532 0.002 1.239 0.002
SD 1.556 0.002 1.207 0.003

5 All 1.539 0.002 1.226 0.002
SD 1.564 0.003 1.192 0.003

H3N2

Pre

1 All 1.644 0.002 2.325 0.008
SD 1.712 0.005 2.418 0.016

2 All 1.376 0.001 1.443 0.003
SD 1.396 0.001 1.430 0.003

3 All 1.344 0.001 1.338 0.003
SD 1.363 0.001 1.345 0.003

4 All 1.341 0.001 1.311 0.003
SD 1.363 0.001 1.325 0.003

5 All 1.341 0.001 1.303 0.003
SD 1.363 0.001 1.318 0.002

Post

1 All 1.563 0.010 2.029 0.110
SD 1.578 0.011 2.032 0.119

2 All 1.355 0.001 1.555 0.003
SD 1.356 0.001 1.539 0.005

3 All 1.323 0.001 1.494 0.003
SD 1.326 0.001 1.485 0.003

4 All 1.328 0.001 1.489 0.002
SD 1.330 0.001 1.478 0.003

5 All 1.327 0.001 1.488 0.002
SD 1.330 0.001 1.477 0.004

Each dimension was tested with 100 replicates,
with each of those maps undergoing 1000 optimizations.
The test proportion was 10% of the full data set.
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Figure 3.1: Validation of two-dimensional antigenic cartography with human sera. Each of the datasets
was tested through five dimensions. Two dimensions were determined to be appropriate for visualizing
the maps as indicated by the leveling off of the root mean square prediction error (RMSE). Each dimen-
sion was tested with 100 replicates, with each of those maps undergoing 1000 optimizations. The test
proportion was 10% of the full data set
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3.2 Comparison to previous studies

Antigenic cartography was introduced with the H3N2 viruses using ferret sera (Smith et al., 2004). Fonville

et al., 2015 then expanded the initial map, which previously ended in 2002, to 2014. The viruses in this

study (this thesis) do not overlap entirely with the viruses used for Smith et al., 2004 or Fonville et al.,

2015 maps, and the virus distances from these maps cannot be used. Generation of the ferret HAI titers

necessary to provide the virus distances was outside the scope of this study in resources and time.

In addition to the H3N2 maps being incomplete, only a limited set of antigenic maps for the H1N1

viruses have been completed. The antigenic maps for the H1N1 viruses have been done using serological

HAI data for H1 human and swine viruses (Lorusso et al., 2010; Smith et al., 2004; Tapia et al., 2020) and

using sequence-based antigenic distance estimates (Anderson et al., 2018).

Therefore, the HAI titer matrix from this human cohort was used to create both H1N1 and H3N2

maps. Before using distances from these cartographies, the H3N2 pre-immune human maps were con-

firmed to match H3N2 cartographies created with ferret sera (Fonville et al., 2015; Smith et al., 2004) and

child human sera. Child human sera were used for the Fonville et al., 2015 study to minimize the pre-

existing antibodies to influenza in the sera. Adolescents and adults have a history of exposure; therefore,

it was confirmed that these pre-existing antibodies did not overtly affect the position of the viral antigens

on the cartographies.

The Smith et al., 2004 HAI data was sourced from the Racmacs R package (Wilks, 2021). The Fonville

et al., 2015 HAI data was sourced from the manuscript’s supplementary data, specifically supplemen-

tary dataset 5 for the ferret H3N2 maps and supplementary dataset 4 for the high responding human

H3N2 maps. The map from this study used as the comparator was the H3N2 map created with the post-

vaccination standard dose only sera. The Fonville et al., 2015 and current studies maps were compared to

the Smith et al., 2004 maps (Figure 3.2). All maps were aligned to each other using Procrustes analysis,

which allows for translation, scaling, or both (Table 3.2). Scaling when aligning maps was recommended

for combining data created using different assays and multiplying all coordinates by a constant scalar.
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Translation allows for the movement of the origin of one map. Both of these techniques are used to

minimize the distance between matching points. Scaling and translation were both investigated because

it was observed that the human cartographies, either pre-immune or child, had a smaller radius than the

ferret maps. When comparing the Smith et al., 2004 map to the current study maps, the root means

square distance (RMSD) of the antigens was smaller when scaling and translation were both applied to

the pre-immune human cartography.

Figure 3.2: Procrustes maps of different datasets compared to the original H3N2 cartography. The Smith
et al., 2004 cartography had nine viruses that overlapped with Fonville et al., 2015 and current study. The
viruses that did not have a match are shown with red open circles. Arrows indicate the positioning of the
virus in the other cartography. Maps were aligned, allowing for only translation.

After confirming that the maps produced with human pre-immune sera correspond to the previously

published maps, the distances derived from these maps were investigated. Due to the interest in the car-

tographic pair-wise distance from a specified vaccine strain, the relative cartographic distance introduced

previously was used (J. Wang et al., 2021). After selecting the vaccine virus to use for the reference point of

the relative antigenic distance, the Euclidean distance from the vaccine virus to the HAI panel virus was

calculated by extracting the position coordinates of both viruses and calculating the Euclidean distance

between the two points (Equation 2.6). For validation, all pair-wise distances were found regardless of

whether a virus was a vaccine virus. Thus, for each map and virus, the relative antigenic distances were
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Table 3.2: Procrustes analysis RMSD values under different alignment conditions
RMSD of matched viruses

Map 1 Map 2 # Ag Translation = T
Scaling = F

Translation = F
Scaling = T

Translation = T
Scaling = T

Smith
Fonville Ferret 9 3.314 4.123 3.604

Fonville Human 9 2.395 3.34 3.07
Skarlupka 9 8.027 3.341 2.704

Fonville Ferret Fonville Human 14 3.211 3.237 2.321
Skarlupka 5 2.924 2.043 2.255

Fonville Human Skarlupka 5 2.397 2.252 1.976
Map 1: Map that is procrustes against
Map 2: Comparison map
RMSD: root mean square distance
# Ag: Number of shared viruses (antigens) between maps

calculated. The correlation of the Smith et al., 2004 distances to the other maps for each reference virus

was determined (Figure 3.3, Table 3.3). The relative distances with the pre-vaccination and all sera dataset

maps were compared and did not differ significantly from the post-vaccination SD sera dataset results.

Of the different virus pairs, there was only one that was not significantly correlated with Smith et al.,

2004 distances, SI/2/87 (Sing/87) with a Pearson correlation coefficient of 0.555. The Fonville et al., 2015

dataset did not contain this virus to provide a comparison.

The datasets were then separated even further into individual seasons to determine if there was a

season-based effect. However, after stratifying by season, the high correlation between the pre- and post-

vaccination relative distances remained for the H3N2 viruses (Figure 3.4) and the H1N1 viruses (Figure

3.5). The total number of viral antigens and sera samples used for each map is included in Table 3.4.

Antigenic distances between the H1N1 and H3N2 strains were determined using antigenic cartography

created using human post-vaccination HAI titers to a panel of H1N1 viruses (Figure 3.2A) and the H3N2

viruses (Figure 3.2B).
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Figure 3.3: Correlations of the relative Euclidean distances from A/H3N2/Panama/2007/1999. The
relative distances to PM/99 from the Smith et al., 2004 dataset were compared with the matching antigens
in the ferret, and human datasets from Fonville et al., 2015 and in this current study (SD dataset). All
maps were aligned to the Smith et al., 2004 maps, allowing for only translation. The matched viruses
between the Smith et al., 2004 dataset and the other datasets are labeled on the respective plots. The linear
regression between the paired points is shown with 95% confidence intervals with the blue line. The black
line indicates the line of identity (y = x). Pearson’s correlation coefficient (R) and the two-sided p-value
are included on each plot.

Table 3.3: Correlation coefficients of pair-wise cartographic distances when varying the relative viruses
Fonville Ferret Fonville Human Skarlupka

Relative Virus r p-value r p-value r p-value
HK/1/68 0.939 <0.001
PC/1/73 0.964 <0.001
TE/1/77 0.930 <0.001
SI/2/87 0.555 0.121
NL/938/92 0.916 <0.001 0.930 <0.001
SD/9/93 0.781 0.013
ST/20/93 0.921 <0.001 0.903 <0.001
FI/381/95 0.944 <0.001 0.754 0.019
NA/933/95 0.955 <0.001
WU/359/95 0.935 <0.001 0.804 0.009
HK/280/97 0.907 <0.001 0.827 0.006
SY/5/97 0.901 <0.001 0.925 <0.001 0.947 <0.001
PM/2007/99 0.815 0.007 0.890 0.001 0.973 <0.001
FU/411/02 0.915 <0.001 0.949 <0.001 0.978 <0.001
NL/1/02 0.853 0.003 0.843 0.004
Pearson’s correlation coefficient (r) and two-sided p-value
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Figure 3.4: Relative distances to the vaccine strains for each season for pre- and post-vaccination standard
dose sera datasets of the H3N2 viruses. The vaccine strains for the given season were used as the relative
virus to calculate the distances. Plots were faceted by season with the sample size of individuals used
to create each map. The number of individuals varied due to some being underconstrained for map
placement. The Pearson’s correlation coefficient (R) and the two-sided p-value are shown. The blue line
indicates the linear regression with 95% confidence intervals, and the black line is the line of identity (y =
x).
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Figure 3.5: Relative distances to the vaccine strains for each season for pre- and post-vaccination standard
dose sera datasets of the H3N2 viruses. The vaccine strains for the given season were used as the relative
virus to calculate the distances. Plots were faceted by season with the sample size of individuals used
to create each map. The number of individuals varied due to some being underconstrained for map
placement. The Pearson’s correlation coefficient (R) and the two-sided p-value are shown. The blue line
indicates the linear regression with 95% confidence intervals, and the black line is the line of identity (y =
x).
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Table 3.4: Number of viruses and sera samples included in each antigenic cartography
Virus Sera

Season Subtype Pre Post Pre Post

2014 H1N1 15 15 221 228
H3N2 18 18 233 234

2015 H1N1 15 15 191 200
H3N2 18 18 203 209

2016 H1N1 16 16 318 328
H3N2 17 17 328 328

2017 H1N1 16 16 251 255
H3N2 18 18 255 255

2018 H1N1 9 9 139 152
H3N2 10 10 237 238

2019 H1N1 5 5 58 157
H3N2 7 7 321 381

Overall H1N1 18 18 1,188 1,316
H3N2 21 21 1,585 1,645

Figure 3.6: Antigenic cartographies were created using pre-immune human sera for the H1N1 and H3N2
subtypes. (A) The H1N1 panel included viruses from 1918 to 2018 with vaccine viruses of CA/09, MI/15,
and Bris/18. (B) The H3N2 viruses ranged from 1968 to 2019 with vaccine viruses of TX/12, Switz/13,
HK/14, Sing/16, and KS/17. All viruses were of human origin. Each map was created using the post-
vaccination HAI titers from SD cohort participants. Each map underwent 100 optimizations. 1 antigenic
distance unit = 1 log2 increase in HAI = 1 2-fold increase in HAI.
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3.3 Conclusion

The distances of the H3N2 viruses using pre-immune human maps were validated using pre-existing data

created with a naive ferret and human sera. The relative antigenic distances correlated highly between

the different datasets. Therefore, it was concluded that the use of the pre-immune human sera maps was

appropriate. For the H1N1 viruses, the lack of previously published antigenic cartographies using naive

ferret sera limited the ability for validation. Therefore, the H3N2 map conclusion was applied to the H1N1

cartographies.

The post-vaccination standard dose antigenic cartography maps were used to calculate each virus’s

relative distance from a vaccine strain for both the H1N1 and H3N2 subtypes.
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Chapter 4

Application of distance measures

to vaccine responses

Three methods of calculating pair-wise distances between viruses were compared to determine which was

more strongly associated with vaccination outcomes. The three methods were 1.) difference in the year of

isolation, 2.) p-epitope sequence-based measure, and 3.) antigenic cartographic Euclidean distance. The

investigated vaccine outcomes were 1.) pre- and post-vaccination titers and 2.) titer increase.

4.1 Pre- and post-vaccination titers

The relationship between the pre- and post-vaccination titers and the distances were first investigated by

stratifying by season and vaccine strain (Figure 4.1 and Supplementary Figure B). All individuals who

received the SD vaccination were included for the respective seasons. For H1N1 viruses, antigenic and

p-epitope distances had greater slopes and y-intercepts than year distance for each season until 2019, when

A/Brisbane/2018 was first introduced as a vaccine antigen. For the H3N2 viruses, the difference between

the antigenic and p-epitope regressions was not as great as the year method. There was stronger association

with these measures for some seasons, though, especially the p-epitope (2014-2017 seasons). The slopes

of the pre- and post-vaccination titers linear regressions were not parallel. Individuals did not have an
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equal response across all strains in the panel, which was most prominent in the p-epitope and cartography

measures.

Figure 4.1: Pre- and post- vaccination titers to the H1N1 and H3N2 virus panels by season of all individuals
who received SD vaccination for the 2017 season (sample size per season included). The vaccination strain
of each subtype per season is shown in the row label. The linear regression of the pre- and post-vaccination
titers with 95% confidence intervals are shown. The three distance measures are shown in the column
label. The resulting linear regression equations of the pre- and post-vaccination linear regressions are
included. Select viruses are included to depict the change in positioning based upon distance measure.
The distances were normalized by season (Equation 2.7).

39



4.2 Titer Increase

Pre- and post-vaccination titers provide information regarding where the individual’s titer begins and

ends. However, since change in titer after vaccination is the primary outcome of interest, the titer increase

was also investigated.

4.2.1 Season level analysis

When comparing titer increase to relative distance, the relationship previously observed with pre- and post-

vaccination remained. Initially, each season was analyzed separately. For the 2017 season, the p-epitope

and cartographic sequence measures had a stronger association with the titer increase induced by the H1N1

vaccine strain (Figure 4.2.1). Whereas for the H3N2, the three measures were again similar. The other

season results are shown in Supplementary Figure B.

4.2.2 Strain level analysis

The influenza vaccine strains were included in multiple seasons. Therefore, the breadth of a vaccine strain

over the tested HAI panel was investigated. HAI panels varied across vaccine strains; as such, comparisons

are to be made only across various distance measures, not across different strains. For instance, the CA/09

vaccine strain was tested against a broader panel than the Bris/18.

On a strain basis, the CA/09 and MI/15 strains had a stronger relationship between titer increase and

distance from vaccine strain (Figure 4.2.2). For the Bris/18 strain, the linear regressions were similar across

the different measures, and the Bris/18 strain panel was not as extensive as the other two strains. However,

all three measures indicate an association between the titer increase and distance.

Of the H3N2 strains, distance measures remain similar across the different vaccine strains (Figure

4.2.2). The strain-based results are nearly identical to the season-based results due to the H3N2 vaccine

component changing every year except for 2016 and 2017, where HK/14 was the vaccine strain.
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Figure 4.2: The titer increase to the H1N1 and H3N2 virus panels for the 2017 season of all individuals who
received SD vaccination. The columns are separated by vaccine strain. The linear regression of the titer
increase with 95% confidence intervals is shown for each distance method. The distances were normalized
by season (Equation 2.7). The raw data points had jitter applied with +/- 0.4 in the y-axis. Raw data
points that fell outside of the y-axis bounds are not shown.
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Figure 4.3: The titer increase to the H1N1 vaccine viruses, including all individuals who received SD
vaccination. The columns are separated by vaccine strain and include all seasons that strain was used as the
vaccine virus. The linear regression of the titer increase with 95% confidence intervals is shown for each
distance method. The distances were normalized by strain (Equation 2.8). The raw data points had jitter
applied with +/- 0.4 in the y-axis. Raw data points that fell outside of the y-axis bounds are not shown.
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Figure 4.4: The titer increase to the H3N2 vaccine viruses, including all individuals who received SD
vaccination. The columns are separated by vaccine strain and include all seasons that strain was used as the
vaccine virus. The linear regression of the titer increase with 95% confidence intervals is shown for each
distance method. The distances were normalized by strain (Equation 2.8). The raw data points had jitter
applied with +/- 0.4 in the y-axis. Raw data points that fell outside of the y-axis bounds are not shown.
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4.3 Quantification of breadth and application of weighting

Although the linear regression provides information regarding the association of the distance measures

and vaccine outcomes, the area under the curve was used to quantify the breadth of the vaccine response.

The area included all areas bounded between the minimum and maximum distance. For the 2017 SD

cohort, the AUC was greater for the p-epitope and cartography measures, as expected for H1N1 (Table

4.3). For the H3N2, the p-epitope and cartography measures are still greater than a year, although by a

smaller magnitude.

Table 4.1: Area under the curve (AUC) of the 2017 season with different weighting schemes applied
AUC

Vaccine Method Unweighted Linear 2 AU

MI/15
Year 0.409 0.240 0.223

P-epitope 0.812 0.521 0.509
Cartography 0.726 0.474 0.466

HK/14
Year 0.409 0.285 0.235

P-epitope 0.578 0.378 0.299
Cartography 0.495 0.319 0.251

AU: Antigenic Distance
Distance normalization by strain (Equation 2.7)

Different weighting approaches were applied to the AUC (Figure 4.3). These weightings schemes are

examples of different techniques that could be applied to data. The first is unweighted (original AUC),

representing a scenario where all viruses in the panel are equally important in terms of eliciting an anti-

body response (Figure 4.3A). The second scenario places a linearly decreasing weight on the virus panel.

Distances that are closer to the vaccine have a higher weight, whereas viruses further away are weighted

less (Figure 4.3B). The third scenario is a step function based on the antigenic distance of the viruses.

This method is to, for example, determine the vaccine breadth within a specified range (Figure 4.3). Since

two antigenic units define antigenically similar viruses, it was used as the cutoff for the examples. The

weighting schemes were applied to the SD 2017 cohort (Table 4.3) and for each strain (Table 4.3).
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Table 4.2: Area under the curve (AUC) of different distance measures by influenza vaccine strain with
different weighting schemes applied.

AUC
Subtype Vaccine Method Unweighted Linear 2 AU

H1N1

CA/09
Year 0.374 0.202 0.198
P-epitope 0.645 0.394 0.409
Cartography 0.592 0.365 0.381

MI/15
Year 0.332 0.204 0.194
P-epitope 0.756 0.489 0.479
Cartography 0.612 0.412 0.411

Bris/18
Year 0.729 0.464 0.498
P-epitope 0.866 0.528 0.558
Cartography 0.812 0.503 0.534

H3N2

TX/12
Year 0.402 0.286 0.267
P-epitope 0.624 0.402 0.355
Cartography 0.531 0.343 0.304

Switz/13
Year 0.743 0.585 0.572
P-epitope 1.404 0.936 0.844
Cartography 1.072 0.754 0.699

HK/14
Year 0.524 0.375 0.314
P-epitope 0.768 0.504 0.401
Cartography 0.646 0.425 0.338

Sing/16
Year 0.657 0.362 0.431
P-epitope 0.690 0.378 0.449
Cartography 0.597 0.330 0.393

KS/17
Year 1.209 0.682 0.792
P-epitope 1.319 0.776 0.912
Cartography 1.401 0.813 0.952

Distance normalization by strain (Equation 2.8)
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Figure 4.5: Examples of the weighting schemes applied to data. Weighting of the results can emphasize the
desired antibody responses while reducing the emphasis on undesired ones. Three schemes presented here
included the A) unweighted scheme, where each distance value is equally weighted after fitting. B) The
linear scheme weights the antibody responses at the minimum distance one and the antibody responses at
the maximum distance zero. The furthest virus antibody response is thus reduced to have no impact on the
breadth measurement. In a negative linear relationship, the contributions of the viruses with increasing
distance have less weight. C) The antigenic unit step weighting is based on the two antigenic units used
for vaccine selection. For viruses within two antigenic units of the vaccine strain, they are weighted at one.
The strains outside of the cutoff have a final weight of zero.

4.4 Case-study

Overall it was found that the p-epitope and cartographic distances were more appropriate for determin-

ing quantification of the breadth. Although it is known that the HD vaccine elicits a stronger antibody

response to the vaccine strain, the comparative breadth is not well characterized. Therefore, these dis-

tance measures and breadth quantification were applied to compare HD and SD vaccines to determine

differences in breadth.

Individuals with age greater than or equal to 65 were included in the dose analysis (Table 2.2). The

titer increase for the different seasons (Figure 4.4 and Supplementary Figure B) was quantified for the

area under the curve and with the different weightings applied (Table 4.4). Within the 2017 season, the

HD vaccine had greater breadth than the SD vaccine. Even with different weightings, the HD vaccine had
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a greater AUC than SD for both H1N1 and H3N2 components. Overall, the p-epitope and cartography

AUC were greater than the year AUC, similar to the previous SD only measurements.

Figure 4.6: The titer increase (TI) to the H1N1 and H3N2 virus panels for the 2017 season of all individuals
greater than or equal to 65 years of age. The columns are separated by type of distance measure. The linear
regression of the titer increase with 95% confidence intervals is shown for the dose received. The distances
were normalized by season (Equation 2.7). The black line indicates no titer increase. The raw data points
had jitter applied with +/- 0.4 in the y-axis. Raw data points that fell outside of the y-axis bounds are not
shown.

On a strain level, the CA/09 and MI/15 strains elicited a greater breadth in HD vaccine (Table 4.4).

Whereas, for the Bris/18 strain, the SD formulation elicited a greater breadth with the unweighted changes

(Year: -0.189; P-epitope: -0.184; Cartography: -0.186). These values were consistent across measures. For

the H3N2 vaccine strains, the TX/12 HD vaccine strains elicited an increased breadth. Whereas the other
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Table 4.3: Area under the curve for three weighting schemes for 65+ individuals for the 2017 season
Unweighted Linear 2 Antigenic Unit

Vaccine Method HD SD Change HD SD Change HD SD Change
MI/15 Year 0.203 0.077 0.126 0.174 0.088 0.086 0.191 0.104 0.087

P-epitope 0.570 0.360 0.210 0.366 0.247 0.119 0.358 0.249 0.109
Cartography 0.570 0.349 0.221 0.390 0.255 0.135 0.392 0.264 0.128

HK/14 Year 0.465 0.341 0.124 0.357 0.250 0.107 0.310 0.212 0.098
P-epitope 0.729 0.507 0.222 0.506 0.340 0.166 0.416 0.273 0.143
Cartography 0.595 0.424 0.171 0.413 0.285 0.128 0.340 0.230 0.110

HD: High dose
SD: Standard dose
Distance normalization by season (Equation 2.7)

strains, Switz/13, HK/14, and Sing/16, had minimal change in breadth, with KS/17 strain SD having a

greater response.
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Figure 4.7: The titer increase to the H1N1 strains for HD and SD recipients. The columns are separated
by vaccine strain and include all seasons that strain was used as the vaccine virus. The linear regression of
the titer increase with 95% confidence intervals is shown for each distance method. The distances were
normalized by strain (Equation 2.8). The raw data points had jitter applied with +/- 0.4 in the y-axis.
Raw data points that fell outside of the y-axis bounds are not shown.
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Figure 4.8: The titer increase to the H3N2 strains for HD and SD recipients. The columns are separated
by vaccine strain and include all seasons that strain was used as the vaccine virus. The linear regression of
the titer increase with 95% confidence intervals is shown for each distance method. The distances were
normalized by strain (Equation 2.8). The raw data points had jitter applied with +/- 0.4 in the y-axis.
Raw data points that fell outside of the y-axis bounds are not shown.
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4.5 Limitations

One of the limitations of using titer increase and post-vaccination titer as a measurement is a physiolog-

ical maximum. A maximum threshold of HAI titer limits the antibody response observed (Attias et al.,

2021; Krammer et al., 2021). Therefore, if an individual has pre-existing titers to a virus through mul-

tiple influenza exposures, a smaller titer increase can be observed than a naive individual. This smaller

increase may have no bearing on the efficacy of the vaccine. To overcome this limitation, future studies

can investigate the outcome of seroconversion, which is an HAI antibody titer greater than or equal to

1:40.
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Chapter 5

Discussion

Overall, sequence- or cartographic-based distances provided the strongest association with vaccine out-

come than the year-based measure. Further, even though the three measures varied minimally between

some strains (H3N2 strains) for some strains, the year method never produced a greater association than

the other two. Therefore, the sequence and cartographic measures performed equal to or better than

the year-based measure. Consequently, it was determined that sequence and cartographic methods are

preferred over using the year of isolation.

The year of isolation correlates highly with the sequence and cartographic measures for the H3N2

viruses. The H3N2 viruses have undergone constant antigenic drift over time with no antigenic shifts,

leading to this correlation. For now, using the time-based measure yields similar results as the sequence and

cartographic measures. However, only human isolated viruses that underwent this antigenic drift were

included in the panel. Developing a vaccine that protects from potential zoonotic pandemics requires

a virus panel that includes viruses isolated from animal reservoirs. Antigenically distinct H3 influenza

is common in the swine population, and variants have been isolated from human infection (Bangaru

et al., 2016). These viruses would overlap in time of isolation with the human isolated viruses; the year,

sequence, and cartographic values would no longer correlate. Hence, although the different measures

were not significantly different in this study, these methods would be preferred in a study looking at a

more comprehensive panel.
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The differences observed between the sequence- and cartographic-based methods were minimal for

both the H1N1 and H3N2 for season and strain comparisons. In fact, for the H3N2 subtype, the p-epitope

measure had consistently greater AUC than the cartographic measure. It is reassuring that the sequence-

based method provided results consistent with the cartographic ones due to the number of resources

necessary for calculating the cartographies. The generation of sera and testing the panel of viruses provides

direct antigenic data but is not feasible to conduct for a large-scale project. Therefore, using the sequence

data, even though there is no perfect correlation with antigenicity, may provide an appropriate surrogate.

Further, the HAI assay results were used as the outcome in this study. HAI cartography may not be

suitable if using a different assay such as total antibody binding data (HAI only measures RBS binding

antibodies), and new cartographies would need to be created to match the outcome.

Vaccine candidates and immune responses of interest are becoming more diverse. Many research

groups are investigating multiple subtype breadth and breadth with other proteins such as the NA (Chen

et al., 2018; Skarlupka et al., 2021). These methods can be applied to these components as well. Overall,

the techniques described here can assist in selecting vaccine candidates, delivery platforms, and adjuvants

when the goal is to expand the breadth of the immune response. Adopting an objective, reproducible

breadth value would be beneficial for the research community.
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Appendix A

Type B investigation

The Type B influenza have evolved differently overtime than the Type A influenza. The Type B Yamagata-

and Victoria-lineages originated from a most recent common ancestor in the 1980’s. Strains isolated

previous to this phylogenetic split are within the pre-split lineage. The two circulating lineages named

for the strains that marked the divergence (Yamagata-1988 and Victoria-1987). The two lineages have

continued to evolve independently of each other.

In this cohort of individuals cross-reactivity of lineages was observed (Figure A). Cross-reactivity

similar to this was observed previously for a longitudinal cohort in Hong Kong after infection with a

B/Victoria lineage (Lau et al., 2020).
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Figure A.1: Cross-reactivity between Type B influenza lineages. Individuals who were vaccinated with
Fluzone vaccines that contained only one Type B component were analyzed for changes in Type B HAI
titers. All three antigenic clusters were included in the panel (pre-, Yamagata-, and Victoria-lineages).
Vaccination with one lineage of elicited an increase across all three groups. The SD formulation for the
2014 season was trivalent, and quadrivalent for all other seasons.
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Appendix B

Supplemental Figures
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Figure B.1: Pre- and post- vaccination titers to the H1N1 and H3N2 virus panels by season of all individuals
who received SD vaccination for the 2014-2016 and 2018-2019 seasons (sample size per season included).
The vaccination strain of each subtype per season is shown in the row label. The linear regression of the
pre- and post-vaccination titers with 95% confidence intervals are shown. The three distance measures
are shown in the column label. The resulting linear regression equations of the pre- and post-vaccination
linear regressions are included. Distances were season-based normalized (Equation 2.7).
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Figure B.2: The titer increase to the H1N1 and H3N2 virus panels for the 2014-2016 and 2018-2019 seasons
of all individuals who received SD vaccination. The columns are separated by vaccine strain. The linear
regression of the titer increase with 95% confidence intervals are shown for each distance method. Distances
were season-based normalized (Equation 2.7). The raw datapoints had jitter applied with +/- 0.4 in the
y-axis. Raw data points that fell outside of the y-axis bounds are not shown.
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Figure B.3: The titer increase (TI) to the H1N1 and H3N2 virus panels for the 2014-2016 and 2018-2019
season of all individuals greater than or equal to 65 years of age. The columns are separated by distance
method. The linear regression of the titer increase with 95% confidence intervals are shown for the dose
received. Distances were normalized by season (Equation 2.7). The black line indicates no titer increase.
The raw datapoints had jitter applied with +/- 0.4 in the y-axis. Raw data points that fell outside of the
y-axis bounds are not shown.
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